|
Prime-time
Processing It probably started innocently enough. A few years ago, an application note from a Xilinx engineer described the implementation of a small processor that could be used as a microcontroller in designs with complex FSMs. That little piece of soft-IP (now known as PicoBlaze) was quite handy, and it found rapid and widespread acceptance among designers. As with any good idea, though, engineers just couldn't leave it alone. Soon there were requests for wider, faster, more robust processor cores running on FPGAs, and marketers were more than happy to oblige. While it may have been easy enough to throw a powerful processor like a PowerPC or ARM core onto an FPGA, that simple act opened up a Pandora's Box of complexity by bringing embedded systems design into the realm of programmable logic. Today, embedded systems on FPGA are serious business. Just ask the folks at Xilinx and Altera, who have each poured millions of dollars and years of engineering effort into developing and marketing full-blown embedded development capabilities on their programmable logic platforms. The reasoning is simple. Most market studies estimate that there are between 5x and 10x more embedded software and system designers than FPGA designers in the world, and FPGAs have compelling advantages as embedded computing platforms. If FPGA companies can tap into that market with any degree of success, they stand to grow their businesses significantly. So, how are FPGAs doing in their quest to become the computing platform of the future? Where are we in our journey from PicoBlaze processors used as microcontrollers to full-fledged, multi-processor, hardware-accelerated, systems-on-chip using sophisticated FPGA platforms? The answer seems to be that the excitement is just beginning. [more] FPGA-based System-on-Module Approach
Cuts Time to Market, Avoids Obsolescence Configuring and implementing an FPGA-based embedded system is not an easy task. Connecting various blocks of discrete intellectual property (IP) in a system using an FPGA, and making them all work together, continues to be difficult and time-consuming. Instead of designing a system themselves, engineers need a solution that can be quickly configured to closely match their design's required functionality, for the lowest possible cost. A solution that combines FPGAs with a hardware-based system-on-module (SOM) approach makes this possible. One of the major benefits of using an FPGA-based embedded system is the ability to re-use a wide variety of already-designed functional blocks. In the form of soft IP blocks, these functional blocks can be combined to create reference designs that are optimized for specific industry segments. Using a systems-on-module approach provides an excellent target platform for compartmentalizing the FPGA-based IP into a form factor that delivers greater versatility than a single-board solution. Combining a system-on-module approach with FPGA technology produces an environment with several advantages. First, integrating peripheral logic and optimized IP in the FPGA on the system-on-module cuts NRE costs and time to market. [more] | ||||||
ANNOUNCEMENTS
|
All material
copyright © 2003-2005 techfocus media, inc. All rights reserved. |